classification¶
-
class
silk_ml.classification.
Classifier
(target=None, filename=None, target_name=None)[source]¶ Bases:
object
General tasks for classification and data analysis
- Parameters
-
standardize
(normalizer, scaler)[source]¶ Applies a normalizer and scaler preprocessing steps
- Parameters
normalizer (Class.fit_transform) – Class that centers the data
scaler (Class.fit_transform) – Class that modifies the data boundaries
-
features_metrics
(plot=None)[source]¶ Checks for each variable the probability of being splited
- Parameters
plot ('all' or 'categorical' or 'numerical' or None) – Plots the variables, showing the difference in the classes
- Returns
Table of variables and their classification tests
- Return type
pd.DataFrame
-
resample
(rate=0.9, strategy='hybrid')[source]¶ Sampling based methods to balance dataset
- Parameters
rate (float) – Ratio of the number of samples in the minority class over the number of samples in the majority class after resampling
strategy ('hybrid' or 'over_sampling' or 'under_sampling') – Strategy to balance the dataset
-
plot_corr
(values=True)[source]¶ Plots the correlation matrix
- Parameters
values (bool) – Shows each of the correlation values